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Effects of external shear stress on anomalies of physical 
quantities at phase transitions in ferroelectrics of the 
K,SeO, family with incommensurate phase 

V A Golovko and D G Sannikov 
Institute of Crystallography, Academy of Sciences, Moscow 117333, USSR 

Received 26 July 1988, in final form 10 January 1989 

Abstract. For crystals of the K,SeO, family phase diagram on the temperature T-shear stress 
U,, plane is constructed. Analytical expressions for anomalies of physical quantities are 
calculated and analysed for the phase transitions shown in the phase diagram. 

1. Introduction 

Mechanical shear stress a,, (with x and z the incommensurate and polar axes, respect- 
ively) has a substantial effect on the sequence of the initial-incommensurate-com- 
mensurate (Co-I-Cl) phase transitions in K2Se04 and related crystals [l, 21. This effect 
is more fundamental and more interesting than the effect of the electric field E,. While 
E, only shifts the temperature of the I-C1 phase transition, a,,, for values sufficiently 
large, leads to a more complex sequence of phase transitions with the participation of 
one more commensurate phase Cz. The a-y’ phase diagram was constructed for one 
value of a,, [l, 21, where a and y ’  are coefficients of thermodynamic potential (see 
equation (1)). From the experimental point of view the T-a,, phase diagram is of interest 
since it can be obtained directly by taking measurements at different T and a,, values 
for a given crystal. It is also desirable to know how anomalies of physical quantities such 
as polarisation P,, shear strain U,,, dielectric susceptibility x = d P,/d E,, elastic stiffness 
S = du,,/da,, and the specific heat C = -Td2$/d P vary at phase transitions for a,, 
acting on a crystal. These questions are addressed in this paper. 

Experimental studies of the effect of a,, on the I-C phase transition in the ferro- 
electrics K2Se04 and Rb2ZnC14 were initiated by Gladkii et a1 [3], although a,, was 
comparatively small (up to 50 kg cm-2; see below). 

2. Thermodynamic potential 

The thermodynamic potential q5 for KzSeO, can be represented in the form [4]: 

q5 = d x / l  dx  

where 
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@(x) = ap2 + pp4 + y’p6 COS 6 q  - v / p 2  d q / d x  + 6[(dp/dx)2 + ~ ~ ( d q / d x ) ~ ]  

+ aE,p3 sin 3 q  + ba,,p3 cos 3 9  - E : / ~ K  - a:,/2c. 

Here p and q are amplitude and phase of the two-component order parameter q = 
p cos q ,  f = p sin q describing the symmetry changes of the phase Cl(Ci,) and 
C2(C&) with respect to the initial phase Co(Di6,). A specific feature of potential (1) is 
its inclusion of the invariant y’p6 cos 6g, of degree n = 6, which is anisotropic in the q ,  

space, i.e., dependent on q. According to this feature we relate crystals to the K2Se04 
family. 

P, and U,, are defined from (1) using the relations P, = -84/aE,, U,, = -a@/aa,, 
as follows 

P,  = j P,(x) d x / j  dx  P,(x) = E,/K - up3 sin 3q 

(2)  
U,,  = j u,,(x> dx/ j dx u,,(x) = D,,/c - bp3 COS 3 q .  

Two commensurate phases C1 and C2, apart from the initial phase CO, correspond 
to potential (1). The C1 phase is stable for y ’  > 0 and has a spontaneous value of P,, 
while the C2 phase is stable for y ’  < 0 and has a spontaneous value of U,, (for E, = 0, 
a,, = 0). In crystals of the K2Se04 family the sequence of phase transitions Co-I-C1 
(improper ferroelectrics) or CO-I-C2 (improper ferroelastics) can be realised [5] .  In 
what follows we consider the case y ’  > 0 and the effect of a,, on the sequence of 
transitions Co-I-C1 in ferroelectrics. All the results obtained can also be applied to the 
case y ’  < 0 of the effect of E,  on the sequence of transitions CO-I-C2 in ferroelastics. It 
is only necessary to replace E, - a,,, P, u , ~ ,  x t) Sin all the formulae below. Indeed, 
substituting g, + n/6 for q in (1) (i.e., changing the origin of the phase q) we obtain the 
replacement sin 3 q  - cos 3q and the changing of the sign of y ’ ,  which is equivalent to 
the transition from one case to another. 

In (1) the inequalities p > 0, 6 > 0 ,  K > 0 ,  c > 0 are assumed. Suppose as is usually 
done that only coefficient a depends on T: (Y = aT( T - e). Within this approximation, 
inclusion of the invariant yp6 in (1) would lead to excessive accuracy since it results in 
the same corrections as are obtained, for example, by taking into acount the dependence 
of p on T - 8 or the next term in the expansion of a in powers of T - 8. Note that yp6 
should be taken into account for the stability of the crystal at p+ m; moreover the 
inequality I y ‘ l  < y should hold, but this requirement is formal and is usually assumed. 

3. The phase diagram 

For convenience we now give the phase diagram corresponding to potential (1) (see 
figure 1). The following notation is useful 

When (Y = a. (since a. is independent of a,,) the CO-I second-order phase transition is 
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Figure 1. Phase diagram on the plane (Y = T - 0, uxz. CO is the initial phase, C1 and C2 are 
commensurate phases, I1 and I2 are two states of the incommensurate phase. Dimensionless 
variables cus/cuoand Iu,,l/uaareused. Thecoordinatesof the point sintermsof thesevariables 
are: I(&, 0), C(-n/2,0), O(-1, l),  L ( E ,  l /V2~).  For K2Se04: T, = 129 K, T, - 0 = 0.6 K, 
T, = 93 K, un = 300 kg cme2,  uL = 1200 kg 

realised. The value of oo is chosen in such a way that at point 0 (see figure 1) ~u,,~ = oo. 
The dimensionless parameter E characterises anisotropy in the q, space for crystals 
with n = 6. Note that a. = 6q; ,  where qo is the wavevector of the I structure for T = 
Ti. Since qois always small, i.e., qo <s a*,  the reciprocal lattice vector [6], ao is  also small. 
Hence the parameter E = ail2 is small (for usual values of y' and P) .  Subsequently all 
small quantities will be expressed through E .  

The phase diagram in dimensionless variables a ~ / a ~  and (ox,l/oo is universal, i.e., it 
can be applied to any crystal withn = 6. Using numerical estimates of the thermodynamic 
potential coefficients [ 4 , 2 ]  the numerical values of T and U,, (see figure 1) for K2Se04 
can be represented on the abscissa and ordinate, respectively. We give estimates of uo 
and uL for K2Se04: 

4 y' 112 

7c b2 P 
uo = - (Tc  - O ) ( - - E )  = 300 k g ~ m - ~  

uL = u , / ( ~ E )  '1' = 1200 kg cm-2. 
Note that E in (3) differs from E in [4 ]  by l/.\/F. We shall return to the phase diagram 
later. 

4. Commensurate phases 

For the initial phase CO: 
p = O  @ = - u y 2 c  P,  = 0 

U, ,  = Gxr /C  X = 1/K s = l/c. 
( 4 )  

In what follows all the values @, P,, U,,, x, S, C will be measured from their values in the 



5500 V A Golovko and D G Sanlzikov 

phase Co. The results for the phases C, and C2 will be given initially without neglecting 
any invariants in (1) since in various regions of the phase diagram these can play different 
roles. 

For the commensurate phase C1 

CY + 2pp* - 3y’p4 = 0 
F 

COS 3q = - - 
4 Y ’ P 3  

There are six domains in this phase, three of which differ from the other three by the 
sign of the spontaneous value P,. After averaging over the domains, we obtain P, = 0. 
Note that x in ( 5 )  is calculated in the approximation y’p2 4 p. 

For the commensurate phase C2: 

cu+2pp* +33y‘p4 
F 

cos39  = -- 
IF1 

sin 3 q  = 0 

F 
U,, = bp3 - 

IF/ 
I#) = (up* + pp4 + ylp6 P ,  = 0 

-1 

‘There are three domains in this phase (for F # 0). 

5. Phase transitions between commensurate phases 

The boundary between phases C1 and C2, which starts at point 0 (see figure 1) is defined 
from the condition lcos3qI = 1 (see ( 5 )  and (6)), i.e., from the condition IF1 = 4y1p3 
which gives for the value CY (defined as CY*, on this boundary) the expression 

The C2-C1 phase transition is of the second order: all the values p, rp, P,, U,, are 
continuous at the transition point. If the natural approximation y’p* 4 p is assumed 
which, for example, at 0 point is reduced to the inequality E 4 1 then the second term in 
brackets in (7) can be neglected. 
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In the vicinity of the C2-Cl phase transition when / a  - a211/1 (yzll 4 1 we obtain 

in the phases C2 and C1, respectively. As can be seen from (8), x varies in both 
phases according to the Curie-Weiss law x = Cx/l T - T21 1 ,  where the Curie constant is 
dependent on the external force C, = F2/3; see (7). C, is small, for example, at point 0: 
C, = E .  However, cyzl = a,n/2 at point 0 and therefore Cx differs only by a multiplier 
close to unityfrom C, at the I-CI transition ( F  = 0); see (37) below. At the I-C1 transition 
the Curie-Weiss law is distinctly observed. Therefore the C2-Cl phase transition can be 
reliably revealed in experiment by measuring x. Moreover, at the CTCl transition, S 
undergoes an upward jump by avalue = b2/4y‘ ,  while Cundergoes a small jump upwards 
(for example, - E  at point 0). 

The boundary between the phases CO and C2 that starts at point L is defined from 
(6): 

a = aO2 = F 2 / 4 P .  ( 9 )  
This expression is obtained in the approximation y ’ p 2 G p  which reduces to the 
inequality e2 1. The CO-C2 phase transition is realised as a weak first-order transition 
because of the presence in (1) of the invariant Fp3 cos 3q of the third power in p.  At the 
CrC2 transition x and S undergo very small upward jumps, for example, at point 0, x = 
a 2 e 2 / y ’ ,  S = 9 b 2 ~ 2 / y ’ ,  while C undergoes the usual jump upwards C = a$ TO2/2/3; see 
(6). Note that the presence of the I phase (for example, its closeness on the phase 
diagram) in no way affects the anomalies of the physical quantities in the commensurate 
phases C1 and C2. 

6. Solution for q in the I phase 

In considering the I phase we use the constant amplitude approximation dp/dx = 0 [7]. 
Such an approximation can be applied when anisotropy in the q ,  E space is small. In this 
case both the intrinsic anisotropy defined by the invariant y’p6 cos 6 q  and the anisotropy 
induced by the external force, which is defined by the invariant Fp3 cos 3q, should be 
small; see (1). When these conditions are satisfied independently, they are reduced to 
the following inequalities (see [6] for n = 6 and n = 3) 

E 4 1  Ea:,/a8 6 1. (10) 
It should be emphasised that the coefficient y’  by itself need not necessarily be small: 
the condition E G 1 holds for the usual values of y’  and /3 due to a small value of ao. In 
K2Se0, according to estimations of [4,2], E = 0.03. At the point 0 a,, = go, and hence 
the second inequality in (10) will also be satisfied up to the values of a,, not exceeding 
oo by too much. 

Minimising 4 in (1) with respect to q(x) ,  assuming the constant amplitude approxi- 
mation, we obtain 

26p2 d 2 q / d x 2  + 6y’p6 sin 6 q  + 3Fp3 sin 3q = 0. 

6pZ(dq/dX)2 - y ‘p6  COS 6 q  - Fp3 COS 3q = C 

(11) 

(12) 

Multiplying this equation by d q /dx  and integrating, we obtain 

where Cis an integration constant. This equation can be solved by separation of variables 
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resulting in an expression for x in the form of an elliptic integral. By the standard 
transformation this integral is reduced to the normal form, i.e., the solution can be 
expressed, for example, as the Jacobian elliptic function. It is easier, however, first to 
transform equation (12) in such a way as to obtain the solution in the normal elliptic 
integral form. 

Changing the variable U = cos 3yl in (12) we get 

6p2  (dU/dX)2 = 9(1 - u2)(2y’p6u2 + Fp3u - y ’p6 + C). 

U = ( U  - 1)/(1 - Iv) 

(13) 

(14) 

Now we apply the transformation of the form 

where U is a new variable while the constant 1 is chosen in such a way that excludes in the 
equation for U a term linear in U .  For this the following relation should be satisfied: 

~p312 - 2(y’p6 + cy + ~ p 3  = o (15) 
which can be considered as a replacement of C by the new integration constant 1. The 
equation for v can now be represented as 

(dv/dx)2 = 9Fp(l - 12)(1 - v2)(1 - k2 - k2v2)/261, 

k2 = l ( 4 y ’ p 3 / F  - 1)/(1 - 1’). 

(16) 

(17) 

where C is excluded by using (15) and the constant k2  is introduced: 

The solution of equation (16) is the Jacobian elliptic function U = cn(3px, k)  with 
modulus k (which can be verified by substitution), where 

p *  = Fp(1 - 12)/2&. (18) 
The second integration constant xo specifying the origin of x can be assumed to be zero. 
The solution of equation (11) takes the form 

cn(3px, k )  - I 
1 - I cn(3px, k)’  

cos39  = 

Note that the solution (19) valid only if k2 G 1, 1 I1 6 1. It follows from (18) that the sign 
of I coincides with the sign of F. 

To analyse the results obtained it is convenient to use, instead of parameters k and 
I, other parameters m and n: 

with --CO < m 6 1 , 0  S n < W. Relation (17) expresses n in terms of m: 

w / ( m  + n)  = /F1/4y’p3  (21) 
whereas m should be defined from the condition of minimum of the thermodynamic 
potential. 

The values m > 0 correspond to one state of the I phase: I, which has solitons of two 
types, the values m < 0 correspond to the other state 12, which has solitons of one type. 
The 11-12 boundary (not the phase transition line), is defined from the condition m = 0 
[ 11, Note that the use of two signs for m makes it possible to represent the solution for 
various states I1 and I2 of the I phase in one and the same form (19). 
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7. Expression for t#~ in the I phase 

Substituting (19) into (1)  and integrating $ with respect tox (averaging $over the period 
of $ ( x )  equal to 4K/3p) we get 

Fp3[(2n + 3)K - 2E - 2(n + l ) H ]  
$ = (up2 + pp4 + y'p6 - 2 V n ( n  + l ) K  

Here and in what follows K = K(m), E = E(m) ,  II = n ( n ,  m) are complete elliptic 
integrals of the first, second and third kinds, respectively, with modulusm and parameter 
n. To avoid confusion we give an expression for n: 

dO[(l + n sin2 O ) ( l  - msin2 O ) 1 ' 2 ] - 1 .  

From the condition a$/am = 0 using (22) for $, we have 

[ -K+ E + (n  + l)II]' = T C ~ C Y ~ - / ~ I F J ~ .  

Substituting (23) into (22), we simplify the expression for $: 

$ = (up2 + pp4 + yip6 - ( ~ ( ( 2 n  + i)p3/2- 

8. Expressions for q, P,, U,.. and x in the I phase 

Since the period of the functions ~ ( x ) ,  E(x) equals 4K/p,  we have for the wavenumber 
q characterising the I structure: 

n p  n l  -)'I2 = (;):4"(K[-K + E + (n + l)n]}-l 

where (18), (20) and (23) are used. 

of Pz(x)  and u,,(x) equal to 4K/3p) we obtain 
Substituting (19) into (2)  and integrating with respect tox (averaging over the period 

where (20) and (21) are used. 
To obtain the expression for x in the I phase it is necessary to find the dependence 

P,(E,) in the linear approximation in E,. One has to add to equation ( 1 1 )  the term 
3aE,p3 cos 3cp and to the left-hand side of (12) the term aE,p3 sin 3rp. A solution of this 
equation will be sought in the form rp = qo + ql, where cpl = E,. Using (11) for cpo we 
obtain the solution of (12) for q 

aE,p sin 3cp0 + C 
cp1 =z dx. 

drpo lo 26(dcp,/d~)~ 

The integration constant C = E?; (since it specifies the period variation that can not be 
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linear in ,??,)and hence C can be neglected. Substituting the solution (19) into (24) and 
calculating the integral we get 

aE,l[k2 cn(3px) + 1(1 - k 2 )  - (k2  + 1 - f k 2 )  dn(3px)l 
3F(1 - k 2 ) ( 1  - 12)[1 - Zcn(3px)l (28) 071 = 

It follows from (2) that 

P , ( x )  = -up3 sin 307 = -up3 sin 3 q 0  - 3ap307, cos 3 q 0 .  (29) 

Substituting (28) into (29) and integrating (29) with respect to x (averaging Pz(x)  over 
the period equal to 4K/3p) we get 

a2E,p3Z[E - (1 - k 2 ) K ]  
K2(1 - k2)F(1 - P ) K  ’ 

P,  = 

Taking into account (20) and (21) it follows that 

9. Expression for p in the I phase 

Until now it has been possible to do without an expression for p assuming only p = 
const. There are two main methods of defining this constant. The first consists in taking 
for p the same expression as in the C phase [7]. In this case the I-C transition happens 
to be continuous [6]; exact solutions (without assuming p = const) obtained under 
specific conditions support this result [8]. The expression for p chosen in such a way is 
valid only in the vicinity of the I-C transition. 

The second method consists in defining p from the condition a@/dp = 0 [9] which 
allows one to obtain for p an expression well applicable to the wide interval of the 
existence of the I phase excluding the immediate vicinity of the I-C transition. Indeed, 
the transition turns out to be of first order. 

In this paper p is defined acording to the first method since it allows us to find 
anomalies of physical quantities in the vicinity of the I-C transition where they are 
particularly pronounced. Let us consider the I,-C1 phase transition and take expression 
( 5 )  for p in the I phase. Then, according to (24), @ in the I1 phase can be represented in 
the form 

(32) 
F 2  IFI(2n + l ) p 3  F 2 m ( l -  m) 

= @ 1 -  8y’n(n + 1) 8y 22/n(n+ 1) 
4 = ($1 + 2y’p6 + 7 - 

where (21) is used and @ I  is the value of @ (see ( 5 ) )  in the C1 phase. 
and 

hence form = 1 a continuous Il-CI phase transition is realised. Thus the phase transition 
also retains features of a continuous lock-in transition for a,, # 0. Similarly, assuming 
that p in the I2 phase in the vicinity of the transition is the same as in the C2 phase, it can 
be shown that the 12-C2 transition is a continuous lock-in transition. 

Since y ‘  > 0 and m > 0 (in the I1 phase), then, as follows from (32), @ < 
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10. The I& phase transition line 

The boundary between the I1 phase and the C1 phase is defined from the condition 
m = 1. Since the asymptotic expression for II(m,n) as m + 1 is 

II = ( K  + v'G tan-'V/n>/(n + 1) 
it will be convenient to introduce the parameter q instead of n: n = tan2 q.  If we exclude 
Fand then p from (21) and (23) we obtain the I,-C, transition line in a parametric form 

-w/au =f1[1 - ( 9 E f 1 1  1 U,, ]/ao = fj12 sin q 
fl = f l ( V >  = (+)(cos v + q sin q1-l 
where a, denotes the value of a at the line. The value I/J = 0 corresponds to point C (with 
as = a,) and the value q = n/2 corresponds to point 0. The value defined from the 
condition q tan q = 2 corresponds, as is easily verified, to point M (see figure 1). 

In the vicinity of point C when a, - a, e (ac/, dependence (33) can be represented 
in explicit form; 

(33) 

(a ,  - aC>/<-ac> = ( T ,  - T, ) / ( e  - T , )  = (4/n3)(~,,/od2 (34) 

i.e., the shift of the transition temperature is T,  - T, = U:,. Relation (34) is represented 
in figure 1 by the broken curve. Note that experimentally U,, is usually created by 
pressure on the crystal of an xz cut. Moreover, along with U,, the stresses U,, and a,, 
also arise. They enter the thermodynamic potential as ~ ~ , , , ~ p ~ ,  and hence they 
lead to a linear shift in T,: ATc = U,,,,, that is stronger than that obtained from (34): 
AT,  = U:,. 

11. The I,-C2 phase transition line 

On the 1,-C2 boundary we have m + -to, II + and the asymptotic expression for I7 is 
I7= Thus it is convenient to introduce the parameter 8: 
m/n = -cos2 8. From (21) and (23) the 12-C2 transition line is derived in a parametric 
form 

- a , ~ / a ~  = f2[1 - ($)Efz(l - 2/sin2 e)]  
f 2  =fz(e)  = (n/2) tan e / ( i  + 28/sin28). 

The value 0 = ?t/2 corresponds to point 0 and the value defined from sin2 8 = 8 cor- 
responds to point N, as is easily verified. 

The location of point L on the phase diagram is independent of the approximation 
p = const. It is determined by the condition of the intersection of the transition lines 
Co-C2 and Co-12: a = (to, U,, = u u / 6 .  Here, as when obtaining equation (9) for the 
CO-C2 transition line, the condition y'p2 -=s /3 is assumed, which reduces to 1. Notice 
that the triple point L is not the Lifshitz point in the usual sense [lo], since the Co-C2 
phase transition is of the first order. 

The lines of C,-C2, I1-CI and 1,-C2 (low part) phase transitions in figure 1 are drawn 
according to (7), (33) and (35) without taking into account the second terms in brackets. 
These terms in (33) and (35) within the approximation p = const. are unreliable and 
small, since they are - E .  Note that curve (35) does not pass through the point L 
even though it represents a continuous transition; it results from the fact that the 

1 U,, I/uo = f:I2/sin2 8 
(35) 
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approximation p = const. is inapplicable for not small anisotropy induced by the external 
force a,, = aL. 

12. Anomalies of physical quantities in the I phase near II-CI and 12-C2 phase transitions 

To find expressions for S and C in the I phase it is necessary to differentiate expressions 
for U,, in (26) with respect to a,, and $I in (24) with respect to T.  It also should be taken 
into account that the parameters m and n depend on a,, and T as well. Therefore, final 
expressions turn out to be extremely clumsy. Of major interest, however, is the region 
close to the 11-C1 and 12-C2 phase transitions where anomalies are most pronounced. 
In this region one can expand expressions into a series in terms of a small value m’ = 
1 - m and one can retain, when differentiating, only the leading term in the expansion, 
i.e., a maximum one form’ 4 1. As a result we obtain for the II-C1 phase transition 

a 2  -a, 1 
‘=iij7=1- v t a n q / 2  

S = -  b2 - *S w 2  
4y’ ( a  - a,) h2)a  - a,I 1 - li, tan v/2 

Ta: 2m(-a , )  cos q(1 - q tan q/2) 
2p ( a - a s ) l n 2 1 a - a , l  1 + q t a n q  

1G2 1 1 b2 
U , ,  =- 

e=-- 

4y’ a x z .  ‘ = 1‘’ 1nla - a,/ 1 + y tan li, 

Here the expressions (25) for q ,  (26) for U,, and (31) for x are expanded in terms of m’.  
Inequalities (10) are used for the derivation (36) and subsequently (37) and (38). 

If we pass in (36) to the limit U,,-- 0, i.e., assume that q-+ fi+ F/4y’p2, += 0 see 
(21), then we get 

a2 -a,  Ta; ~JGE(-(Y, )  s=o C=-- x = F G  
‘ = Z ‘O ln(a - a,) 

28 ( a  - a,) In2(@ - a,) 

1d2 1 b2 
U,, = - 4y’ a x z .  

(37) 

The expressions for x and C in (37) coincide with the leading terms of the expansions in 
terms of m’  or in terms of a - acfor the case a,, = 0 [6]. For S in (37) we obtain 0 instead 
of b2/4y‘, since only the leading term of the expansion is taken into account in (36). 

Proceeding in the same way as we did when deriving (36) we obtain for the vicinity 
of the 12-C2 phase transition in the I2 phase the following results 

a2 
8Y 

x=,2tan2 8 

b2 - a, 482 
4y’ ( a  - a,) h21a - a,l 1 - 8/sin28 

Ta? 2n&(-a,)  2 1 - 8/sin 28 
2p (a - a,) In2 la - a, I tan e 1 + 28/sin 28 

S = -  

C=- 
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b2 -- 
4Y’ Ox, sin2 e. U,, - 

Let us consider the four temperature dependences (36)-(38), all of which occur in the 
case a,, = 0 (37). It follows from (36) that in the vicinity of the 11-C1 transition, x varies 
according to the Curie-Weiss law just as in the case when a,, = 0 (see (37)). The Curie 
constant in (36) has an additional factor compared to (37) that depends on q. This factor 
increases with q from 1 at the point C (q  = 0) to CC at the point M and then decreases to 
zero at point 0 ( = n/2). According to (38), in the vicinity of the 12-C2 transition, x is 
a constant independent of T that decreases with 8 from CC at point 0 ( e  = n/2) and tends 
asymptotically to become 0 as 8 + 0. It is easily seen that x is continuous at the 12-Cz 
transition. 

In the vicinity of both the 11-C1 (36) and 12-C2 transitions (38) S and C have 
temperature dependences of the same kind as C in (37) for a,, = 0. These dependences 
can be conventionally called the Curie-Weiss law. The corresponding Curie ‘constants’ 
strongly depend on Tbecause of l n2 /a  - asl in the denominator and for the same reason 
are very small. The additional terms depending on q and 0 vary in such a way that at 
points C, M, 0, N shown in figure 1 take the following values for S :  0, m, 0, CC and the 
term tends to 0 as 6 + 0. For C: 1 ,0 ,0 ,0  and it tends to x as 8 + 0. It follows from the 
comparison of dependences S( T) for a,, # 0 (36) and (38), and for a,, = 0 (37) that U,, 

induces a narrow peak of S in the vicinity of T = T,. For a,, = 0, S does not depend on 
Tin the vicinity of T = T, and is continuous at T = T,. 

The wavenumber q depends on T i n  the vicinity of the transitions Il-C1 (36) and 
1 2 4  (38) in the same way as for a,, = 0 (37). The additional factor varies in such a way 
as to assume at points C, M,  0, N the values 1, &, 0, $ and it tends to 0 as 8 -  0. U,, is 
independent of T and continuous at the transitions 11-C1 and 12-C2. 

The above treatment of anomalies of physical quantities at phase transitions I1-C1 
and 12-C2 and also C2-C1 will hopefully help to identify these transitions in experiments. 
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